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Abstract--This paper presents • yield model for acoustic charge
transport transversal filters. This model differs from previous IC
yield models in that it does not assume that Individual failures
of the nondestructive sensing taps necessarily cause • device
failure. A redundancy in the number of taps included in the
design is explained. Poisson statistics are used to describe the
tap failures, weighted over • uniform defect density distribution.
A representative design example is presented. The minimum
number of taps needed to realize the filter is calculated, and tap
weights for various numbers of redundant taps are calculated.
The critical area for device failure is calculated for each level
of redundancy. Yield is predicted for a range of defect densities
and redundancies. To verify the model, a Monte Carlo simulation
is performed on an equivalent circuit model of the device. The
results of the yield model are then compared to the Monte Carlo
simulation. Better than 95% agreement was obtained for the
Poisson model with redundant taps ranging from 30% to 150%
over the minimum.

I. INTRODUCTION

COUSTIC charge transport (ACT) devices are charge
transfer devices similar to conventional charge coupled

devices (CCD), except that the mechanism for localizing and

transporting charge packets is an electric field induced in

a piezoelectric material by a surface acoustic wave (SAW)

[1]. The basic operation of the ACT device consists of input

sampling, charge transport, and output sensing. Since nonde-

structive sensing is used, multiple outputs can be summed
at various locations along the transport channel. In this con-

figuration, the device operates as a tapped delay line. Since
it is fabricated using GaAs heterostructures, MESFET's and
other devices can be easily fabricated on integrated circuits

to provide tap weighting and amplification. If the weighted

taps are summed on a common output bus, a programmable
transversalfilter (PTF) structure is obtained [1]. A PTF block

diagram is shown in Fig. 1.
Transversal filters are used frequently in digital signal

processing (DSP) at much lower frequencies and bandwidths.
ACT-PTF's are roughly three orders of magnitude faster than

conventional DSP technology due to the fact that multiply

and accumulate functions are done in parallel by analog

circuits. SAW devices can also perform the PTF function.

Their primary disadvantage is that they are not made w!th

semiconducting materials, and thus external circuitry cannot

be integrated in monolithic form. Si CCD technology was
also once used for PTF's at lower frequencies [2]. However,
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Block diagram of an ACT-PTF.

because of inherent speed limitations in MOSFET charge
transfer devices, DSP technology has made this approach

obsolete. High speed GaAs CCD's show potential for this

application, but devices with sufficient delay have not yet been

demonstrated.
ACT device technology was first demonstrated by Gaalema

etal. in 1976 [3]. This device relied on the potential induced in

a piezoelectric material in close contact with a depleted silicon
metal-insulator--semiconductor 0diS) capacitor to transport

injected charge at the acoustic velocity. In 1982, Hoskins et

al. reported the first monolithic ACT using GaAs technology

[4]. GaAs is both semiconducting and weakly piezoelectric,

allowing both the acoustic transducer and the depletion region
to be fabricated on the same die. In 1987, Tanski reported

the first GaAQAIGaAs beterostructure ACT (HACT) device

[5]. Today, ACT devices are in low-volume production for

radar signal processing and other high-speed signal processing

applications 16]. Other high volume eomrnercial applications,

such as computer disk drive equalization and imaging, are also

being investigated. Such high-volume applications will require

significant improvements in the production yield.
ACT device yield depends on many parameters. Material

defects affect the yield in a global sense with both catastrophic

and parametric failures. In addition to material defects, spot
defects due to lithography faults cause additional catastrophic

failures. Since material defects cannot be designed out, im-

provements in yield will be obtained only from careful control
of the manufacturing process. Like material defects, yield can

be improved through process control. However, because of the

large die size (,-,1 cm 2, typically), additional improvements

may be required for commercial feasibility. In a previous

paper, we presented an approach to improve yield, which is

implemented in the design phase through the use of redundant
circuits [7]. This paper expands upon this in several ways.
The minimum number of taps to theoretically meet a filter

specification is calculated. From this, a number of designs

0894--6507/95504.00 © 1995 IEEE
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Fig. 2. Schemanc representation of the physical su,ucture of an ACT-PTF.

are developed around a given redundancy factor. This factor

is then included in the yield model, which is based on a

cumulative Poisson function. In [7], we showed that uniformly

distributed defect densities provide the most accurate yield

predictions. Yield predictions are performed for PTF's with

30%-150% redundancy over the minimum number of taps

(i.e., a range of redundancy factors from 1.3 to 2.5). The model
is then verified by performing a Monte Carlo yield simulation

on equivalent circuit models of each of the filters. The basis

of the equivalent circuit models is given in [8].

If. ACT P'TF CIRcurr MODEL

The physical structure of a HACT device is shown schemat-
ically in Fig. 2. The charge injection is accomplished by a

MESFET. Mobile electrons in the source region are swept

through the depletion region by the SAW potential created

by the acoustic transducer. As the SAW potential sweeps

beneath a gate electrode, a discrete packet of charge breaks

off and is transported down the ACT channel at the acoustic

velocity. Since the depth of the depletion region is modulated

by the gate potential, the amount of charge in the packet

is proportional to the input signal. The equivalent circuit

that represents this operation is a voltage-controlled current
source, with the value of the transconductance being averaged

over one SAW period. This is shown in Fig. 3, along with

the remainder of the ACT-PTF equivalent circuit model

developed in [8]. The SAW propagates as a guided wave,

and is modeled as a transrmssion line with a phase velocity

equal to the acoustic velocity. The ACT channel is periodically

tapped by sensing elements at the surface of the channel. These
elements are reversed-biased Schottky diodes. The charge

packets moving beneath the taps create an image current in

the Schottky metal proportional to the channel current. This

is modeled by the Norton equivalent circuit. Tap weighting is

accomplished by a capacitive current divider, and the sign can

be implemented using a differential amplifier (not shown).
As shown in [8], the effects of the parasitic elements,

P_, Cos, and Ro, the nonzero width sampling aperture,

and the frequency response of the differential amplifier can
be neglected. The frequency response of the ACT-FIT is

determined by the ratios of the weighting capacitors C,, to

! TRANSFER CIRCUIT

vm TAP1 TAP2...TAPn...TAPNI

--

Fig. 3. An equivalent circuit for an ACT-PTF showing • single output

circuit. Tap weighting is accomplished by the capacitors C, of multiple output

circuits.

TABLE I

D_SmN Sp_c_no_ Po_ ^ B,s.m_ss Fn_r.R

FrtOaeney I/J: [ 70.0 MI-b

ra_irimk _ [BI: [ 20 MHz

illppIc: [ :1: O.S dB

O_-¢¢'-ilaml Ib_aioa: I0 - $$ MHz I 25 dBI_ - 130 MHz 25dB

the output capacitance Co. The ACT-PTF output current io

is given by

N, Ci
io = (gin} E v°'(t - iT,)" s, Co+C,

i=1

_(gm)Evo,(t-irol.s,-_o, forC,<<Co (1)
t=l

where {g,,_) is the sample-averaged transconductance, Nt is

the number of taps. t/o, is the input signal. T, is the sampling
period, and si is the tap sign created by the differential

amplifier. This is essentially the form of the impulse response

of the transversal filter shown in Fig. 1. What distinguishes this

type of filter architecture from traditional analog filters is the

fact that the impulse response is finite. Since this type of filter

is commonly used in DSP, methods have been developed to

synthesize the tap weights of such a filter [9]. We will choose a

representative design example in order to investigate the yield
properties of ACT-FrF's. A typical design specification for

this example is shown below in Table I.

One design approach for FIR filters is to assume an ideal

square passband, and calculate the tap coefficients from well-

known Fourier transform relationships [10]. The ith tap weight

is given as

, sin[lrBTo(i - N,/2)] • cos (i_r) (2)
wi = lrBT,(i - NJ2)

where T, is the Nyquist sampling period (=1/2/c), and Nt is

the number of taps, and B is the bandwidth parameter. The

rectangular window function inherent in (2) results in degraded

stopband attenuation. Because the tap truncation is essentially

a frequency domain convolution with a sin (f)/f function,

the stopband attenuation is limited to about 20 dB. Various
methods have been proposed to circumvent this limitation [9],
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and all of these rely on multiplying the tap weight sequence by
a function that descends to zero in a more gradual manner than

the rectangular window. One of the more common window
functions is the Kaiser window [9]:

N,/2 / j ) (3)

K(n) = lo(fl)

for 0 < i < Nt, where lo is the modified Bessel function of

the first kind, and _ is a shape parameter determined by the

stopband ripple 6,

{ 0.1102(A - 8.7) A >50

_/= ) 0.5842(A - 21) 0't (4(a))

tO +0.07886(A - 21) 21 < A < 50A<21

where

A = 20 log & (4(b))

Thus we arrive at the formula for the tap weighting capacitors

Ci:

C, = w(n)K(n)Ct (5)

where Ct is a fixed value such that Ct << Co. The sign

of the weighing function is implemented with a switch and

differential amplifier circuit not explicitly included in this

circuit model. For the purposes of yield prediction, we simply

include the sign of C_ in the element value.
Kaiser has also provided a semi-empirical expression to

predict the minimum number of taps for a given filter response
based on passband flatness bl stopband ripple/_2, and transition

bandwidth Af [9].

-10 log(61b2) - 13 (6)
Nmi. = 14.6 AfT.

However, parasitic effects tend to dominate the fine-grain
behavior to ACT-PTF's and reduce yield. For this mason, it

is common to include a redundancy factor r, such that Nt =

rNmi,, to provide for performance margin over the specified

flatness, rejection, and transition bandwidth. Too many

redundant taps, however, results in a larger die size, and hence

a lower yield. We investigate herein a range of redundancy
factors from r = 1.3, to r = 2.5. The lower bound of this

range was empirically determined to be the minimum for the

given specification. The upper bound was also determined
empirically to be the highest feasible factor that could result

in yield improvement. This range results in the number of

taps being extended from 29 to 71. The simulated nominal

frequency response of this ACT-PTF is shown in Fig. 4.

III. ACT-PTF YIELD MODEL DEVELOPMENT

This paper concentrates on ACT-PTF failures due to missing

taps. This is a common failure dependent on a number of
defects [5]. Photoresist defects can result in metal being

missing from some portion of the tap. in addition to this,
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Fig. 4. Nominal frequency response of an ACT-PTF designed to meet

specification given in Table I The redundancy of this filter is r : l._.

01

-I 0

0

re -20

0
c-
O

U.

-40
ii.qF1i:_t
;ltllfi

10 $0

L7
-- Fllhd ¢,_1_ Tllp

I F'a't lli Illl

I .... iF_--_--"ilia I1llll

50 70 lO 110 130

Frequency (MHz)

Fig. 5. Effect of lap failures on hhe frequency t_.sponse of an ACT-PTF.

tap weighting and interconnect circuits can also contribute

to tap failures. However, unlike digital circuits and most

analog circuits, a missing tap circuit does not necessarily
result in a device failure. This soft failure mode is due to

the parallel operation of the device. Thus, when the circuit

is designed with some redundancy factor greater than unity,

effective redundancy in the yield performance results. Fig. 5
shows the effect of missing taps on the frequency response.

This figure shows the nominal response, and three responses

degraded due to missing tap circuits. The one showing the

worst rejection is the result of removing the middle tap (at
the peak of the sin (x)/x). Taps are "removed" by setting the

appropriate weighting capacitor C, to zero. The next worst
rejection is caused by removing two taps about mid-way off of

the center of the impulse response function. The last degraded

trace actually meets the design specification, and results from

removing a single tap away from the center for the impulse

response. From this data, one might infer that an effective

redundancy of one tap exists. Our goal is to determine to what
extent this is true, and to make yield predictions for a given

process.
Previous yield models that have been developed have con-

centrated mostly on the yield of digital VLSI circuits, or other

such circuits whereby a single circuit failure results in a bad

die [12], [15]. As shown above, this is somewhat pessimistic
for the ACT-PTF. It is possible, however, to extend some
of these models to account for the effective redundancy. The

Poisson model was chosen as a basis for the redundant-tap

yield model for the following reasons:

1) It has been shown to be accurate for spot defects with

relatively low defect densities [13].
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Fig. 6.
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2) It is derived from first principles of statistical failure

analysis (i.e., the limit of the binomial distribution for

small average failure rates) [14].

3) It does not require a priori knowledge of empirically de-
termined process parameters, other than defect density.

4) It is simple in form and easy to modify to account for

redundancy.

The basic form of a Poisson model modified for redundancy
is simply the cumulative Poisson function calculated over

some defect density distribution function:

f _° (NtAcD) _
Y"_= _-_ /o e_.p(-NtAcD) I(D)dD (7)

i=0

where Ac is the critical area of the tap and weighting circuitry,

D is the defect density, and f(D) is the defect density
distribution function. The critical area is calculated for a bet-

erojunction ACT device currently being fabricated at Georgia

Tech is shown in Fig. 6. The width of the tap fingers is usually

quite small (2 tim). However, since the defect size is not

specified for this model, it is assumed that a defect occurring

anywhere within one half acoustic wavelength (20/_m at the

operating frequency) causes a tap failure. This is a conservative
estimate, but this model could be refined if the distribution of

defect sizes was known [12]. The channel width, and hence the

tap length is 1 ram. The interconnect and weighting circuits
also take up approximately 50% more area. This yields an

effective critical area per tap circuit of

Ac = (20.m)(1000.m)(1.5)
= 3.0.10 -4 cm 2. (8)

In [7], we investigated three defect density distribution

functions: delta function, uniform, and triangular (see Fig. 7).
These are given below in (9(a))-(9(c)), respectively:

I(D) = 6(Do) (9(a))

f 1

f(D) = 'i _D---_ 0 < D <_ 2Do (9(b))
• 0 D > 2Do

"IT
D O

(a)

2Do
_D

'°'m1/2D0

I
D 0 2D0

Co)

rD

q/Do

>O
DO 2D0

(c)

Fig, 7. Defect probability density functions [15]. (a) Delta function distri-

bution. Co)Uniformdisu'ibution.(c)Trianglefunctiondistribution.

[_--_o2 0<D<D0

'tD) = / 02--DD°_D' DD°< D <'LDo>2D0- (9(c))

where Do is the average defect density of the given distribu-

tion. It was found that the uniform defect density distribution

(90a)) provided the best fit to the yield as predicted by the

Monte Carlo model. Substituting this into (6), we obtain an

analytic yield model Yu,,,(Do)

_-o D fo 2D° (N'AcDI' exp(-N'AcD)Y,,,._ (Do) = 2"---_ i! dD.

(10)

It was also shown in [7] that the one redundancy model (m = 1)

is in the best agreement with the expected yield. We calculated

the yield model for a range of average defect densities Do for
the m = I case. The results of these calculations are shown

in Fig. 8(a)-(d), along with the results from the Monte Carlo
simulations discussed in the next section.

IV. MONTE CARLO ym_n SI_nJLA_ON

To establishthe validityof the one-redundancy Poisson

models developed in the last section, a Monte Carlo yield

analysis was performed on the ACT-PTF equivalent circuit

model. Essentially, this involves calculating the frequency

response a number of times with the tap capacitors weighted

by a binomial random variable b E {0, 1}, with a probability of
failure p. Monte Carlo yield estimation is included in Libra. TM

"rMLibra is available from EEsoL Inc., 6501 Lindero Canyon Rd., Westlake

Village.CA 91362.
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However, because it is an analog simulator, binomial random

variables are not supported. In order to calculate the yield due
to catastrophic failures of individual taps, a way to simulate

the binomial random variables was devised by creating a
binomial random variable b from the transformation of a con-

tinuous random variable :r E [0, 1]. One such transformation
is:

b =½[tanh (_(x - ] + p))] (ll)

where c_ is an empirical weighting parameter, p is the expected

value of b, and is related to the probability of tap failure p by p

= I -p.When c_ is large (we used c_ = 100), the mapping causes

the value of b to shift abruptly from 0 to 1 when a is in the

vicinity of ,. Hence b is approximately binomial (b E {0, ! }).

The only parameter required for Monte Carlo yield simula-
tion is the number of trials N. This was chosen by requiring

a 99% probability of at least one tap failing for the lowest
defect density. This is evaluated from the Poisson distribution

in the following manner:

P(y > 1) = 1 - P(y = 0) = 1 - exp(NAcD) = 0.99

=:,N = 384 for D = 1 cm -2. (12)

To be conservative, this number was rounded up to N = 500.

The simulation results are shown in Fig. 8(a)-(d). The Monte

Carlo simulation for each defect density took approximately ! 5

min on a Sun Sparc 10 running Libra TM, version 3.5, sweeping

107 frequency points. The Libra TM Monte Carlo simulation is

TABLE 11

MON'FECARLO Y_a_D PREDICTIONS

Detect _ Yield

r_|J r=l.$ r=2.O r-Z.S

t .991S 1.000 3106 .996

2 .gU .990 .9)4 .914

5 .9?8 .9'?6 .982 .g't4

t0 .964 .972 .9'36 .936

20 .896 .922 .918 .IP_

SO .#02 .124 .I06 .772

IO0 .$90 .674 .6T2 .554

200 .37a .$24 .400 ._42

SO0 .110 .150 .118 .10e

I000 .{X)6 014 .010 .012

compared with the yield predicted by the Poisson model in

Fig. 8(a)-(d), and in tabular form in Table I1. The error of
the models is calculated as the absolute difference between

the predicted and simulated yield. The average and maximum
errors for each of the four cases is given in Table II1. In is

seen that the average error for all four redundancies is less

than 5%, with maximum errors in the range of 8-1 i%.

It is apparent from the Monte Carlo simulation data shown

in Table 11 that the maximum yield is obtained for a redun-

dancy factor of r = 1.5. A simple calculation shows that the

yield as predicted by (10) has a maximum at r = 0. Hence,

we would expect that the best predicted yield would occur at
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TABLE [ll

AVERAGE AND MAXIMUM ERRORS OF THE POISSON YIELD

MODELS VERSUS MONTE CARLO SIMULATION RESULTS

A_snl_germ"(%) 4.2 3.0 3.2 3.9

M,,e,_.mgas'm"(%) S.6 10.g 10.9 10.8

the minimum feasible redundancy, in this case r = 1.3. We

attribute this discrepancy to the fact that the Poisson yield
model does not account for the effects of parasitic elements.

These can cause a significant distortion in the frequency

response, and are responsible for requirement of a greater
than unity redundancy factor to meet the nominal response.
The effect of missing taps then worsens this situation to

the point that any missing tap of appreciable weight leads

to a specification failure. We did investigate the use of a

zero redundancy model for this case. This provided a more

pessimistic yield prediction, but the errors when compared
with the Monte Carlo simulations were higher.

V. SUMMARY AND CONCLUSIONS

In this paper, we have predicted ACT-PTF yieldfrom

Poisson models. An equivalent circuit model was developed

and four filters were designed to meet a typical specifica-

tion with some degree of margin over that obtained with

the minimum number of taps. Poisson yield models were

developed assuming one redundant tap, and weighted by a

uniform defect density distribution. The yield predicted by

these models was calculated over the range of average defect

densities over which the model has been reported to be

accurate. A Monte Carlo yield simulation was then performed

on the equivalent circuit for each of the defect densities. It

was found that the one-redundancy Poisson model agreed

with the Monte Carol simulation with an average error of

better than 5%, and maximum errors of about 10%. In the

prediction of the optimum redundancy, the Poisson model
required the minimum redundancy, while the Monte Carlo
simulations showed that the best yield over the range of defect

densities considered occurs at a redundancy factor of 1.5. We

attributed this discrepancy to the fact that the Poisson model

neglects small parasitic effects, which can cause a specification
deviation. The Monte Carlo model takes these into account,

and thus requires some compensation in the form of redundant

taps.
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